If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2m^2+8m-64=0
a = 2; b = 8; c = -64;
Δ = b2-4ac
Δ = 82-4·2·(-64)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-24}{2*2}=\frac{-32}{4} =-8 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+24}{2*2}=\frac{16}{4} =4 $
| (3x+2)/8=(1-x)/5 | | 7x+17=24x+47 | | 7x−5=5x+27 | | 3x+2/8=1-x/5 | | 25-n/5=18 | | y=2(18)+4 | | 5v^2-4v-105=0 | | 1-7k=-8k-2+6 | | 6x+2(5x+22)=-36 | | 2x(6-5)=4x | | 10x-6+11x-3=180 | | −14412ππ=−k | | 4(9x-5)=-18 | | 5x+8=-24+4x | | -8a=1=-23 | | -(x+3)+3/4+5=0 | | 3(6)+xx=12 | | 2/3d-1=16-d | | 5(2x–10)+5x=10x+70 | | -3x+2(4x-18)=-86 | | 1=-5+2z | | 105+9.50x=105+14.75 | | -3+18x=17x+3 | | -x^2-48x-68=0 | | -8.4+x=12.89 | | 3x^2-10x-20=0 | | -x(5x-8)=11-x | | 3y/2-5=y/2+3 | | 7^y+3=12 | | 5x=28*8 | | 2^x+5=64 | | 60-(3c+4)=49 |